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ABSTRACT 

In recent years, bike-sharing programs have become more prevalent. Bicycle usage can be affected by 

different factors, such as nearby events, road closures, and on-campus traffic policies. The research presented 

here analyzed the effect of weather (average temperature, total daily precipitation, average wind speed, and 

weather outlook), day of the week, holiday/workday, month, and season on the use of the Great Rides Bike 

Share program in Fargo, North Dakota, U.S.A. This study also focused on predicting the 2016 rental demand 

for the Great Rides Bike Share program using Bayesian methods and decision trees. Further, the order of 

importance among the causal attributes was assessed. It was found that decision trees worked well to predict 

the 2016 demand 

1. INTRODUCTION 

Today, more than 500 cities in 49 countries host bike-sharing programs. Urban transport advisor Peter 

Midgley notes that “bike sharing has experienced the fastest growth of any mode of transport in the history of the 

planet” [1]. Modern bike-sharing systems have greatly reduced the theft and vandalism that hindered earlier 

programs by using easily identified specialty bicycles with unique parts that would have little value to a thief, by 

monitoring the cycles’ locations with radio frequency or GPS, and by requiring credit-card payment or smart-

card-based membership to check out bikes. With most systems, after paying a daily, weekly, monthly, or annual 

membership fee, riders can pick up a bicycle that is locked to a well-marked bike rack or electronic docking station 

for a short ride (typically an hour or less) at no additional cost and can return it to any station in the system. Riding 

longer than the program’s specified amount of time generally incurs additional fees to maximize the number of 

available bikes. Bike-sharing programs are becoming popular for the following reasons [2]: • They decrease 

greenhouse gases and improve public health. • They increase transit use due to the new bike transit trips, the 

improved connectivity to other modes of transit because of the first-mile/last-mile solution that bike-sharing helps 

solve, and the decreased number of personal vehicle trips. Due to the increased popularity of these bike-sharing 

programs across the world, it is increasingly becoming important to analyze these systems from different 

perspectives. Figure 1 shows the growth of these bike-sharing programs over the last decade. In this paper, I focus 

on predicting the 2016 bike-rental demand for the Great Rides Bike Share system based in Fargo, North Dakota. 

Fargo’s Great Rides is an 11-station, 101-bicycle seasonal system. In 2015, there were 143,000 trips and an 

average of 6-7 rides per bike per day, more usage per bike than in 2 New York; Washington, D.C.; or Paris [3]. 

The main reason for the program’s success is the integration with student IDs; the Great Rides seasonal pass is 

included as part of the mandatory student-activity fees at North Dakota State University (NDSU). 

1.1 Problem Statement 

The point of this undertaking is to foresee the check of bicycle rentals dependent on the occasional and 

ecological settings. By foreseeing the check, it is conceivable to help oblige in dealing with the quantity of bicycles 

needed consistently, and being ready for appeal of bicycles during top periods.  

1.2 Data 

The objective is to manufacture relapse models which will anticipate the quantity of bicycles utilized 

dependent on the ecological and season conduct. Given underneath is an example of the informational collection 

that we are utilizing to anticipate the quantity of bicycles  
Table 1.1: Bike Count Sample Data (Columns: 1-9) 

 

Table 1.2: Bike Count Sample Data (Columns: 10-16) 
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2. METHODOLOGY 

Pre-Processing A prescient model necessitates that we take a gander at the information before we begin 

to make a model. Be that as it may, in information mining, seeing information alludes to investigating the 

information, cleaning the information just as envisioning the information through diagrams and plots. This is 

known as Exploratory Data Analysis.  

Distribution of consistent factors It can be seen from the beneath histograms is that temperature and feel 

temperature are typically disseminated, whereas the factors windspeed and stickiness are marginally slanted. The 

skewness is likely a result of the presence of anomalies and extraordinary information in those factors.   

 
Distribution of clear-cut factors the circulation of all out factors is as appeared in the beneath figure: 

 

 

 
Relationship of Continuous factors against bicycle check the underneath figure shows the connection between 

nonstop factors and the objective variable utilizing disperse plot. It very well may be seen that there exists a 

straight good connection between the factors temperature and feel temperature with the bicycle rental check. There 

additionally exists a negative straight connection between the variable's dampness and windspeed with the bicycle 

rental check.  

 
Detection of exceptions: Outliers are distinguished utilizing boxplots. Beneath figure delineates the boxplots for 

all the ceaseless factors.  
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Exceptions can be taken out utilizing the Boxplot details technique, wherein the Inter Quartile Range 

(IQR) is determined and the base and most extreme worth are determined for the factors. Any worth going external 

the base and most extreme worth are disposed of. The boxplot of the persistent factors in the wake of eliminating 

the exceptions is appeared in the beneath figure 

It very well may be seen from the dissemination of Windspeed and stickiness after expulsion of 

anomalies, is that information isn't slanted as much as before the evacuation of exceptions. The figure appeared 

underneath shows the dispersion of constant factors utilizing histograms.  

Feature Selection: Feature Selection diminishes the unpredictability of a model and makes it simpler to 

decipher. It likewise diminishes overfitting. Highlights are chosen dependent on their scores in different factual 

tests for their connection with the result variable. Connection plot is utilized to see whether there is any 

multicollinearity between factors. The exceptionally collinear factors are dropped and afterward the model is 

executed 
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3. MODELING 

Model Selection The reliant variable in our model is a persistent variable i.e., Count of bicycle rentals. 

Henceforth the models that we pick are Linear Regression, Decision Tree and Random Forest. The mistake metric 

picked for the difficult articulation is Mean Absolute Error (MAE).  

Multiple Linear Regression Multiple straight relapse is the most well-known type of direct relapse 

examination. Numerous direct relapse is utilized to clarify the connection between one ceaseless ward variable 

and at least two autonomous factors. The free factors can be constant or absolute 

 
As should be obvious the Adjusted R-squared worth, we can clarify 83.73% of the information utilizing our 

various straight relapse model. By taking a gander at the F-measurement and consolidated p-esteem we can reject 

the invalid speculation that target variable doesn't rely upon any of the indicator factors. This model clarifies the 

information well indeed and is viewed as acceptable. Even in the wake of eliminating the non-critical factors, the 

exactness, Adjusted R-squared and Fstatistic don't change by a lot, consequently the precision of this model is 

picked to be conclusive. Mean Absolute Error (MAE) is determined and discovered to be 494. MAPE of this 

numerous direct relapse model is 12.17%. Henceforth the exactness of this model is 87.83%. This model performs 

very well for this test information. 

Decision Tree: A choice tree can be utilized to outwardly and expressly speak to choices and dynamic. 

As the name goes, it utilizes a tree-like model of choices Utilizing choice tree, we can anticipate the estimation 

of bicycle tally. MAE for this model is 684. The MAPE for this choice tree is 17.47%. Subsequently the 

exactness for this model is 82.53%.  

 



 International Journal of Interdisciplinary Innovative Research &Development (IJIIRD) 

ISSN: 2456-236X 

Vol. 05 Issue 01 | 2020 

050139 www.ijiird.com 168 

Random Forest: Using Classification for forecast examination for this situation isn't typical, however it 

tends to be finished. The quantity of choice trees utilized for forecast in the timberland is 500. MAE for this model 

is 392. Utilizing arbitrary woodland, the MAPE was discovered to be 10.68%. Thus the exactness is 89.32%. 

4. CONCLUSION  

Now that we have a couple of models for foreseeing the objective variable, we have to choose which one to pick. 

There are a few standards that exist for assessing and contrasting models.  We can look at the models utilizing 

any of the accompanying rules:  

• Prescient Performance  

• Interpretability 

• Computational Efficiency For our situation of Bike check forecast Data, Interpretability and Computation 

Efficiency, don't hold a lot of criticalness.  

Hence, we will utilize Predictive execution as the standards to look at and assess models. Prescient execution 

can be estimated by contrasting Predictions of the models and genuine estimations of the objective factors, and 

figuring some normal mistake measure.  

4.1 Mean Absolute Error (MAE) 

MAE is one of the mistake estimates used to ascertain the prescient exhibition of the model. We will 

apply this measure to our models that we have created in the past segment. 

MAE <-work (real, pred) { print(mean (abs (real - pred))) } 

Linear Regression Model: MAE = 494 Decision Tree: MAE = 684. Arbitrary Forest: MAE = 392 

Based on the above mistake measurements, Random Forest is the better model for our investigation. Henceforth 

Random Forest is picked as the model for forecast of bicycle rental check. 

5. APPENDIX 
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6. R CODE  

####################EXPLORE USING GRAPHS###################### #CHECK THE 

DISTRIBUTION OF CATEGORICAL DATA USING BAR GRAPH BAR1 = GGPLOT(DATA = DAY, AES(X = 

ACTUAL_SEASON)) + GEOM_BAR() + GGTITLE("COUNT OF SEASON") BAR2 = GGPLOT(DATA = DAY, 

AES(X = ACTUAL_WEATHERSIT)) + GEOM_BAR() + GGTITLE("COUNT OF WEATHER") BAR3 = 

GGPLOT(DATA = DAY, AES(X = ACTUAL_HOLIDAY)) + GEOM_BAR() + GGTITLE("COUNT OF 

HOLIDAY") BAR4 = GGPLOT(DATA = DAY, AES(X = WORKINGDAY)) + GEOM_BAR() + 

GGTITLE("COUNT OF WORKING DAY") 

GRIDEXTRA::GRID.ARRANGE(BAR1,BAR2,BAR3,BAR4,NCOL=2) #CHECK THE DISTRIBUTION OF 

NUMERICAL DATA USING HISTOGRAM HIST1 = GGPLOT(DATA = DAY, AES(X =ACTUAL_TEMP)) + 

GGTITLE("DISTRIBUTION OF TEMPERATURE") + GEOM_HISTOGRAM(BINS = 25) HIST2 = 

GGPLOT(DATA = DAY, AES(X =ACTUAL_HUM)) + GGTITLE("DISTRIBUTION OF HUMIDITY") + 

GEOM_HISTOGRAM(BINS = 25) HIST3 = GGPLOT(DATA = DAY, AES(X =ACTUAL_FEEL_TEMP)) + 

GGTITLE("DISTRIBUTION OF FEEL TEMPERATURE") + GEOM_HISTOGRAM(BINS = 25) HIST4 = 
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GGPLOT(DATA = DAY, AES(X =ACTUAL_WINDSPEED)) + GGTITLE("DISTRIBUTION OF WINDSPEED") 

+ GEOM_HISTOGRAM(BINS = 25) GRIDEXTRA::GRID.ARRANGE(HIST1,HIST2,HIST3,HIST4,NCOL=2) 

#CHECK THE DISTRIBUTION OF NUMERICAL DATA USING SCATTERPLOT SCAT1 = GGPLOT(DATA = 

DAY, AES(X =ACTUAL_TEMP, Y = CNT)) + GGTITLE("DISTRIBUTION OF TEMPERATURE") + 

GEOM_POINT() + XLAB("TEMPERATURE") + YLAB("BIKE COUNT") SCAT2 = GGPLOT(DATA = DAY, 

AES(X =ACTUAL_HUM, Y = CNT)) + GGTITLE("DISTRIBUTION OF HUMIDITY") + 

GEOM_POINT(COLOR="RED") + XLAB("HUMIDITY") + YLAB("BIKE COUNT") SCAT3 = GGPLOT(DATA 

= DAY, AES(X =ACTUAL_FEEL_TEMP, Y = CNT)) + GGTITLE("DISTRIBUTION OF FEEL 

TEMPERATURE") + GEOM_POINT() + XLAB("FEEL TEMPERATURE") + YLAB("BIKE COUNT") SCAT4 = 

GGPLOT(DATA = DAY, AES(X =ACTUAL_WINDSPEED, Y = CNT)) + GGTITLE("DISTRIBUTION OF 

WINDSPEED") + GEOM_POINT(COLOR="RED") + XLAB("WINDSPEED") + YLAB("BIKE COUNT") 

GRIDEXTRA::GRID.ARRANGE(SCAT1,SCAT2,SCAT3,SCAT4,NCOL=2) #CHECK FOR OUTLIERS IN DATA 

USING BOXPLOT CNAMES = 

COLNAMES(DAY[,C("ACTUAL_TEMP","ACTUAL_FEEL_TEMP","ACTUAL_WINDSPEED","ACTUAL_HU

M")]) FOR (I IN 1:LENGTH(CNAMES)) { ASSIGN(PASTE0("GN",I), GGPLOT(AES_STRING(Y = 

CNAMES[I]), DATA = DAY)+ STAT_BOXPLOT(GEOM = "ERRORBAR", WIDTH = 0.5) + 

GEOM_BOXPLOT(OUTLIER.COLOUR="RED", FILL = "GREY" 20 ,OUTLIER.SHAPE=18, 

OUTLIER.SIZE=1, NOTCH=FALSE) + THEME(LEGEND.POSITION="BOTTOM")+ LABS(Y=CNAMES[I]) 

+ GGTITLE(PASTE("BOX PLOT FOR",CNAMES[I]))) } 

GRIDEXTRA::GRID.ARRANGE(GN1,GN3,GN2,GN4,NCOL=2) #REMOVE OUTLIERS IN WINDSPEED VAL 

= DAY[,19][DAY[,19] %IN% BOXPLOT.STATS(DAY[,19])$OUT] DAY = DAY[WHICH(!DAY[,19] %IN% 

VAL),] #CHECK FOR MULTICOLLINEARITY USING VIF DF = 

DAY[,C("INSTANT","TEMP","ATEMP","HUM","WINDSPEED")] VIFCOR(DF) #CHECK FOR 

COLLINEARITY USING CORELATION GRAPH CORRGRAM(DAY, ORDER = F, 

UPPER.PANEL=PANEL.PIE, TEXT.PANEL=PANEL.TXT, MAIN = "CORRELATION PLOT") #REMOVE THE 

UNWANTED VARIABLES DAY <- SUBSET(DAY, SELECT = - 

C(INSTANT,DTEDAY,ATEMP,CASUAL,REGISTERED,ACTUAL_TEMP,ACTUAL_FEEL_TEMP,ACTUAL_WI

NDSPEED,AC TUAL_HUM,ACTUAL_SEASON,ACTUAL_YR,ACTUAL_HOLIDAY,ACTUAL_WEATHERSIT)) 

#########################DECISION TREE######################### #DIVIDE THE DATA INTO 

TRAIN AND TEST SET.SEED(123) TRAIN_INDEX = SAMPLE(1:NROW(DAY), 0.8 * NROW(DAY)) TRAIN = 

DAY[TRAIN_INDEX,] TEST = DAY[-TRAIN_INDEX,] #RPART FOR REGRESSION DT_MODEL = 

RPART(CNT ~ ., DATA = TRAIN, METHOD = "ANOVA") #PREDICT THE TEST CASES DT_PREDICTIONS 

= PREDICT(DT_MODEL, TEST[,-11]) #CREATE DATAFRAME FOR ACTUAL AND PREDICTED VALUES 

DF = DATA.FRAME("ACTUAL"=TEST[,11], "PRED"=DT_PREDICTIONS) HEAD(DF) #CALCULATE MAPE 

REGR.EVAL(TRUES = TEST[,11], PREDS = DT_PREDICTIONS, STATS = 

C("MAE","MSE","RMSE","MAPE")) 21 ####################RANDOM FOREST################ 

#TRAIN THE DATA USING RANDOM FOREST RF_MODEL = RANDOMFOREST(CNT~., DATA = TRAIN, 

NTREE = 500) #PREDICT THE TEST CASES RF_PREDICTIONS = PREDICT(RF_MODEL, TEST[,-11]) 

#CREATE DATAFRAME FOR ACTUAL AND PREDICTED VALUES DF = CBIND(DF,RF_PREDICTIONS) 

HEAD(DF) #CALCULATE MAPE REGR.EVAL(TRUES = TEST[,11], PREDS = RF_PREDICTIONS, STATS = 

C("MAE","MSE","RMSE","MAPE")) #####################LINEAR REGRESSION################ 

#TRAIN THE DATA USING LINEAR REGRESSION LR_MODEL = LM(FORMULA = CNT~., DATA = TRAIN) 

#CHECK THE SUMMARY OF THE MODEL SUMMARY(LR_MODEL) #PREDICT THE TEST CASES 

LR_PREDICTIONS = PREDICT(LR_MODEL, TEST[,-11]) #CREATE DATAFRAME FOR ACTUAL AND 

PREDICTED VALUES DF = CBIND(DF,LR_PREDICTIONS) HEAD(DF) #CALCULATE MAPE 

REGR.EVAL(TRUES = TEST[,11], PREDS = LR_PREDICTIONS, STATS = 

C("MAE","MSE","RMSE","MAPE")) #PREDICT A SAMPLE DATA PREDICT(LR_MODEL,TEST[2,]) 


