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ABSTRACT 
  

One of the key factors for increasing profits and being competitive in a manufacturing industry is by 

managing the production cost. Apart from Time and Method Study, which is majorly dependent on manufacturing 

activities, another aspect of reducing production costs is inventory management. To manage inventory, one needs 

to know the future demands, material lead time and total inventory cost. Inventory management in terms of 

inventory cost becomes even more challenging when high-value raw materials are involved whose prices are highly 

volatile and are fluctuating in a very short span of time. The work presented in this article constitutes an attempt 

to capture the pattern of fluctuation of raw material price over time using past data and establish a forecasting 

model to predict the future price of the material by implementing a time series analysis methodology. In our work, 

we have used past price data and utilized this data to model and forecast future prices. The Box–Jenkins 

methodology (identification, implementation, Diagnostic and Forecasting) was used on the past data to develop an 

autoregressive integrated moving average (ARIMA) model. Based on the results obtained from the developed 

ARIMA model and the model’s MAPE we believe that the model can be used for predicting the future price of any 

raw material. The output of such a prediction model will provide procurement managers of the manufacturing 

industry with some logical backup for taking decisions related to inventory management. 

 

Keyword: - Time Series Analysis, Prediction Model, Forecasting, Box–Jenkins methodology, ARIMA, Raw 

Material Price 
 
1. INTRODUCTION 

At present time, we are having a very competing manufacturing environment. Manufacturers need to act in 

response proactively to the fluctuating demand and one of the crucial focuses is trying to capture more accurate 

demand. This is changing the market to a “pull” environment where the customers are selecting the suppliers based 

on their demands to the supplier at what price they want the products and what should be the delivered period. As 

crucial as Demand forecasting is to inventory management so is the price forecasting of raw materials, especially for 

the high-value raw materials whose prices are fluctuating over a very short span of time. Inventory stock levels can 

be dependent on such price forecasts. If we forecast that the prices are going to increase then we can go for forward 

buying, if the prices are going to reduce then hold the raw material procurement and decide on the final product price 

and delivery commitments to the customers. Such decisions can only be made if we have an accurate price forecast. 

However, an inaccurate forecast can result in significant costs increase instead of the cost reduction. As a result, many 

organizations may go for large investments in inventories anticipating the price escalation or may be liable for a 

penalty on delivery commitments by delaying the raw material procurement process. In some instances, the prices can 

be intermittent prices, i.e., there are times when the prices remain constant for a long period of time and other times 

when there is a sudden surge in price attributed to unforeseen calamities like the COVID Pandemic or the Russia-

Ukraine War, which is a further complicating issue. Such Intermittent price fluctuations present many challenges for 

traditional statistical forecasting techniques. Commonly, there are many approaches for forecasting some of which are 

naive forecasting, exponential smoothing, regression approach, etc. Some more techniques which can be used for the 

prediction of materials prices are Fuzzy Logic, Statistical Methods (including Regression Analysis, MONTE CARLO 
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method, and ANOVA), Artificial Neural Networks and Trend Analysis. For applying most of these approaches, we 

need to have historical data. 

For real-word situations, the linear statistical forecasting methods have been generally used as they are simple 

to develop, implement and interpret. However, Linear models have limitations because many real-world problems are 

nonlinear. Linear models can be used for short-period forecasting where the accuracy is not of high significance. There 

may be no single linear forecasting technique which individually prevails all data sets over all situations as there is 

always some extent of nonlinearity in the data which the linear statistical techniques will not be able to capture. 

Recently, researchers have done a lot of work in the forecasting domain and concluded with many methods among 

which we found two key approaches largely utilized: artificial neural network (ANN) and time series analysis 

techniques. Neural Network models have been successfully used in forecasting. Neural Networks can capture the 

nonlinearity in a data set. Many successful applications have shown that neural networks can be very useful tool for 

time-series modelling and forecasting. Neural networks are data-driven methods with few prior assumptions about the 

underlying models. Instead, neural networks have the capability to identify the underlying functional relationship 

within the data. 

In a manufacturing company which uses high-value raw materials, the price forecasts of these materials are 

of great relevance. Certainly, predicting the prices facilitates the decision on how much to procure and when to 

procure. Such forecasts are of most significance to small-scale industry which uses high-value raw material as 

procurement of such raw material can directly affect their cash flow, productivity, and profitability. In our case, we 

have considered an electrocoating industry which deals with coatings and one of the high-value coating raw materials 

being used is platinum. Hence, we made an attempt to develop an ARIMA model to predict the future prices of 

platinum. 

 

2. LITERATURE REVIEW 

In today’s organizations, forecasting is becoming very significant as many crucial decisions are depending 

on these forecasts. The science of estimating the future level of some variables is known as a forecast. Usually, the 

variable being forecasted is the demand but, in our work, this variable is the purchasing price of raw materials [1][2]. 

For a supply chain management system to be robust and efficient there must be a collaboration between 

different departments of an organization: planning, procurement, manufacturing, and logistics. Based on an accurate 

forecast one much devise an optimal procurement plan to minimize the total production cost, of which, two of the 

components are the procurement cost and inventory holding costs. Because of using these forecasts, one can expect 

benefits like economized inventories, decreased supply chain costs, better return on assets, improved cash flow 

management, higher customer satisfaction, and reduced final product lead times. We need to also keep in mind that 

this optimal procurement plan should also be in line with different company policies among others like production 

capacity, minimum production lots, etc.  

Gaafar and Choueiki (2000) applied an ANN model in material requirement planning for a lot-sizing problem 

in the case of deterministic time-varying demand [3]. Sustrova, T. (2016) used the ANN models in business processes, 

especially in inventory management. The developed model was utilized for the optimization of inventory levels to 

better the ordering system and inventory management [4]. Prybutok et al. (2000) conducted a study on electricity 

demand to compare and assess the performance of ARIMA and ANN methods and forecast the time series [5]. S. L. 

Ho et al. (2002) conducted a study using ARIMA and neural networks on the simulated failure time of a compressor 

[6]. They have discussed the predictive performances of the proposed models. Karin K. (2012) utilized Artificial 

Neural Networks (ANN), support vector machine (SVM) and ARIMA to predict the demand for consumer products. 

In terms of MAPE, SVM was superior in forecasting demand [7]. Aburto et al. (2007) have described their 

development of a hybrid intelligent system for demand forecasting by combining ARIMA and neural networks [8]. 

Mitrea et al. (2009) have compared the forecasting accuracy of Moving Average (MA) and Autoregressive Integrated 

Moving Average (ARIMA) with Neural Networks (NN) models as Feed-forward NN and Nonlinear Autoregressive 

networks with Exogenous inputs (NARX) and their results show forecasting with NN offers better forecasting 

accuracy [9]. Catalao et al. (2006) have proposed a neural network approach to forecast next-week prices in the 

electricity market of mainland Spain [10]. Contreras et al. (2002) and Conejo (2005) used ARIMA methodology to 

forecast electricity prices [11] [12]. 

As shown in the brief literature review above, Artificial Neural Network is a strong tool for the modelling of 

any time series. However, in this article, we have developed and tested the Autoregressive Integrated Moving Average 

first to demonstrate its ability to make accurate forecasts of a high-value raw material price as a primary study.  

A time series can be defined as an observation that is recorded in chronological order of time [1]. In Time 

series analyses for developing forecasting models, one applies mathematical techniques that utilize historical data as 
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an input to output the forecasting variable. Time series methodology is founded on the proposition that the future is a 

chaotic amplification of the past. To predict the future, the challenge lies in capturing the chaotic amplification and 

interpreting it into a mathematical model using known techniques or developing new techniques. There has been much 

research to develop a time series forecasting model using various techniques. Their research interest was forecasting 

the sales of food products, tourism, maintenance repair parts, electricity prices, automobiles, and some other products 

and services [14] [15] [16] [17] [18] [19] [20]. 

In our present study, we have used the Box–Jenkins time series approach, specifically the Autoregressive 

integrated moving average, to model and forecast the price of a raw material price. For this, we have used the price 

data of Platinum from 7th May 2018 to 29th April 2022 (1 - 1024 Days). Several possible ARIMA models were 

estimated using AC and PAC and evaluated by four performance criteria: Akaike criterion (AIC), Schwarz Bayesian 

criterion (SBC), Hannan-Quinn Criterion, and Adjusted R Square Value. The adequate model was diagnosed using a 

Q-Statistical test and new prices were forecasted for the next 600 days (1024 – 1624 Days). 

 

3. METHODOLOGY 

3.1 Autoregressive Integrated Moving Average (ARIMA) 

The autoregressive integrated moving average (ARIMA) model is extensively utilized for time series analysis 

due to its flexibility. Usually, the variable to be predicted in Time series is demand but, in our work, we have used the 

ARIMA technique to predict the price of a material. Kurawarwala and Matsuo (1998) have used the ARIMA technique 

to estimate the seasonal variation of demand by using past data and validated the models by examining the forecast 

performance [21]. Miller and Williams (2003) blended the seasonal factors in their research of improving forecasting 

accuracy [22]. There are many drawbacks to the classical approach of ARIMA. It becomes very difficult to identify 

an ARIMA model if the seasonal adjustment order is high or when its diagnostics fail to indicate that the time series 

is stationary after seasonal adjustment.  

Generally, for a stationary time series an ARMA model is developed. ARMA is a combination of 

autoregressive and moving averages. The autoregressive (AR) components capture the autocorrelation between time 

series. It is also known as the long memory model, and it represents the value at the current time instant in terms of 

the values at the previous time instant depending on the order or lag ‘p’. The 1st order Autoregressive model, AR (1), 

is given by equation (1).  The moving average (MA) component, also known as the short memory model, corresponds 

to the deviation of the series at the current time instant from its mean value as a linear combination of errors in the 

past time instants depending on the order or lag ‘q’. The 1st order Moving average model, MA (1), is given by equation 

(2). ARMA models can be used to describe only stationary time series. 

A time series is said to be stationary if the mean and variance of the underlying process remain constant. If 

the series is non-stationary, then we must use an ARIMA model with order (p, d, q), in which the non-stationary series 

is transformed into stationary series by taking the difference or log difference between consecutive time instants d 

times. 

𝑌𝑡 = 𝛼1𝑌𝑡−1 + 𝜀𝑡  (1) 

Where, 𝜀𝑡 is white noise and 𝛼1 is the parameter of the 1st order AR model.  

𝑌𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 (2) 

Where, 𝜀𝑡 is white noise and 𝜃1 is the parameter of the MA model. 

The integrated process: The I (integrated) part of ARIMA is when the time series is non-stationary and needs 

to be transformed to make it a stationary series. To do this we replaced the raw data values with the difference values 

of d order from one observation to the next. Usually, the differences obtained are comparatively lower than the raw 

data or even fluctuate around a mean value for a process observed at various time intervals. A 1st Order differentiation 

implies that the difference is taken between two successive values of Y from the raw data as shown by equation (3).  

𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡 (3) 

Where 𝜀𝑡 is white noise. 

The three iterative stages of the Box–Jenkins methodology are – the identification of the model, estimation 

of the model parameters, and diagnostic checking steps [23]. The principal rule to identify the ARIMA model is that 

it should have some theoretical autocorrelation properties. By comparing the theoretical and empirical autocorrelation 
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patterns, we try to identify one or several potential ARIMA models for the given time series. For the identification of 

the ARIMA models, Box–Jenkins suggested the use of the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) of the sample data [23]. Since in almost all situations, the raw data is non-stationary 

and hence, to identify the ARIMA models, we will have to transform the raw data to make it stationary. 

As far as the stationarity of a time series is concerned, the statistical characteristics such as the autocorrelation 

structure and the mean of the series remain constant over time. Primarily, to remove trends and stabilize the variance 

from the raw data, we generally implement the differencing and power transformation. After that, we simply estimate 

the model parameters and then specify the model. For model estimation, usually, the maximum likelihood algorithm 

is used such that the overall error is reduced. Further, we use, the Akaike criterion (AIC), Schwarz Bayesian criterion 

(SBC), Hannan-Quinn Criterion, and Adjusted R Square Values to select the best possible model fitting to our sample 

data. Lastly, in the diagnostic stage, we check if our selected model satisfies the requirements of a stable univariate 

process. For this, we check if the residuals of the model are white Noise using the Ljung-Box Q Statistic test and we 

check the ARMA structure using AR and MA roots. If the model is not satisfying the diagnostic benchmarks, then we 

will have to repeat the process of model selection and parameter estimation by selecting different orders of the model. 

Box–Jenkins approach lets us reach a high degree of satisfaction with the model due to its iterative process converging 

to reduced errors. After completing the Box- Jenkins methodology we can use the final model to forecast our variable, 

which is the price in our case. 

3.2 Case Study on Platinum Price 

In this article, the price forecasting of the high-value raw material, i.e., of platinum, for an electro-coating 

industry is attempted based on real past data. This study investigates the effectiveness of price forecasting using time 

series analysis - ARIMA. Following the Box–Jenkins approach, our work has been implemented in three parts: 

identification, estimation, and diagnostic. The model has been developed based on the price of Platinum from 7th May 

2018 to 29th April 2022, i.e., 1 - 1024 time periods or days as shown in Fig -1:. 

 

Fig -1: Historical Price Variation of Platinum from May 2018 to April 2022 

3.2.1 Identification of Model 

In the first step, we checked the stationarity of the raw data followed by the initial pre-processing of the raw data to 

transform it to stationary data, and then we selected all the possible values of p and q which we would fine-tune as the 

model fitting progresses. As described in the previous section, the time series is said to be stationary if its mean and 

variance remain constant across time. If there is a strong trend or seasonality observed in the data, then the data is 

believed to be non-stationary. To check the stationarity of the data, three checks were done. First was the graphical 

check – from Fig -1:, we can see from the graph a slightly increasing trend in the data, variance changes across time 

and also mean is not constant across time which implies data is non-stationary. 
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Next, a correlogram test was done on the data using EViews Software. For Stationarity, the correlogram test of the 

series is shown in Fig -2:. We can see that the Autocorrelation (AC) decays but not in an immediate way and there is 

a significant lag in Partial Autocorrelation (PAC). Also, all the p-values are less than 0.05 suggesting data is non-

stationary. 

 

Fig -2: Correlogram Test to check stationarity of raw data 

Finally, a formal test, i.e., Standard Unit Root Test or Augmented Dickey-Fuller Test was conducted on the series. 

After carrying out the test on the EViews software, the results are shown in Fig -3:. The test hypothesis was as follows, 

the null hypothesis, H0 was “Data has Unit Root” and the alternate hypothesis H1 was “The series does not have a 

unit root. The series is stationary.” 

The calculated p-value was found to be 0.2168 which is crossing the threshold significance level α (0.05), hence, the 

test fails to reject the null hypothesis.  

 

Fig -3: Standard Unit Root Test or Augmented Dickey-Fuller Test on raw data 
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In our case, after testing the raw data for the stationarity using the tests described above, we concluded that our model 

is not true AR or true MA and hence, we would be working with the AR(I)MA (p, d, q) model. We, therefore, 

transformed the data by taking the difference between consecutive series values. 

3.2.2 Estimation 

We took the first Difference (d=1) and the transformed data after 1st difference was tested for stationarity using 

Augmented Dickey-Fuller Test as shown in Fig -4:. In this case, as the p-value was < 0.05, we could reject the null 

hypothesis. Hence, we would be working with the 1st Difference Stationary time series. With 𝑑 = 1 of the ARIMA 

(p, d, q), we identified several possible models using the AC and PAC. 

 

Fig -4: Standard Unit Root Test or Augmented Dickey-Fuller Test For 1st Difference Data 

From the Correlogram of the transformed stationary data as shown in Fig -5:, with AC, we can decide the MA 

component (q) and with PACF we will determine the AR component (p) and as we have selected 1st Difference as 

Stationary data, d is 1. Hence, we identified eight ARIMA Models as shown in Error! Reference source not found. 

 

Fig -5: Correlogram for Stationary Data 
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Table -1: Possible ARIMA Models 

P (AR) Q (MA) d 

5 5 1 

5 6 1 

5 12 1 

5 13 1 

13 5 1 

13 6 1 

13 12 1 

13 13 1 

Now, that we have identified the eight potential ARIMA models, the next step was to estimate the model coefficients 

for all 8 models. The ARIMA procedure in the Eviews time series software estimates the coefficients of the (p, q, d) 

model equation using a maximum likelihood estimation algorithm. Fig -6: shows the ARIMA (13, 1, 12) model’s 

equation estimation in Eviews which was selected as the best model as explained in the next paragraph. 

For the best model selection, we compared the significance of the ARMA Components along with the Adjusted R-

Squared Value (higher value is better) and Akaike, Schwartz and Hannan-Quinn Values (lower value is better) which 

is summarized in Error! Reference source not found. 

AR and MA components are significant if the corresponding p-value is less than 0.05 and the model which has the 

lowest value for the Akaike, Schwartz and Hannan-Quinn criterion will be the best. 

 

Fig -6: ARIMA (13, 1, 12) Model 

As we can see from Error! Reference source not found.ARIMA Model with 𝑝 = 13 and 𝑞 = 12 has the lowest 

values for the Akaike, Schwartz and Hannan-Quinn criterion. Also, the Adj R-Sq value for this model is the highest 

compared to the rest of the possible models. Hence, we identified ARIMA (13, 1, 12) as our best model. The next step 

would be to diagnose this model for best fit. 
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Table -2: Model Selection Criteria 

 

3.2.3 Diagnostic  

Now that we have our potential best-fit model, we checked if this model satisfies the requirements for a stable 

univariate process. For this, we checked if the residuals of the model are white Noise using the Ljung-Box Q Statistic. 

As can be seen in Error! Reference source not found., Autocorrelation and Partial Correlation are within the standard 

error lines and the p-values are bigger than 0.05 which implies that we cannot reject the null hypothesis which is 

“Residuals are White noise” for the Ljung-Box Q Statistic test. Next, we check if the estimated ARMA process is 

stationary. For this, we checked if the AR roots lie inside the unit circle. As can be seen in Error! Reference source 

not found., the AR Roots lie within the Unit circle hence the ARMA process is stationary.  

The last thing that we checked was if the ARMA process is invertible, for this the MA roots should lie within Unit 

Circle which is also true as seen in Error! Reference source not found.. Now that these conditions are satisfied, we 

can use this model for forecasting the price of platinum. 

 

Fig -7: Ljung-Box Q Statistic Test for White Noise 

d 
AR 

(p) 

MA 

(q) 

Lower is Better Higher is Better p-Value < 0.05 

AC SC HQ Adj R-Sq AR(p) MA(q) 

1 5 5 8.521 8.540 8.529 0.003 0.260 0.366 

1 5 6 8.519 8.538 8.526 0.005 0.007 0.016 

1 5 12 8.517 8.537 8.525 0.007 0.014 0.013 

1 5 13 8.518 8.538 8.526 0.006 0.016 0.011 

1 13 5 8.519 8.538 8.526 0.006 0.008 0.029 

1 13 6 8.519 8.538 8.526 0.005 0.006 0.025 

1 13 12 8.516 8.535 8.524 0.008 0.006 0.008 

1 13 13 8.522 8.541 8.529 0.002 0.443 0.579 
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Fig -8:  ARMA Structure - AR Roots and MA Roots 

3.2.3 Forecasting  

Now that we have found our ARIMA model, we forecasted the platinum prices from day 1024 to 1624 (600 days) as 

shown in Error! Reference source not found.. We calculated accuracy measures for our model like Root Mean 

Squared Error, RMSE = 16.03020, Mean Absolute Error = 16.03020, Mean Absolute Percent Error and MAPE = 

1.712628. 

 

 

Fig -9: Forecast for next 600 Days 

4. CONCLUSIONS 

In this paper, we have attempted to use the Box–Jenkins procedure for ARIMA modelling to forecast the prices of 

platinum metal. The Box–Jenkins procedure for the ARIMA model has been discussed in detail. First, the four-year, 

past data is collected and checked if the data is stationary. Since the data was nonstationary, data is transformed to 1st 

Difference and found that the 1st Difference data is stationary. Using the transformed data, all the possible ARIMA 

models are identified, and the best model is selected by comparing the Akaike, Schwartz and Hannan-Quinn criteria 
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(a smaller one is better). After selecting the best potential model for forecasting, the selected model is first diagnosed 

to ensure it satisfies the requirements of a stable univariate process. To do this, we checked the residuals of the model 

are white noise (Ljung-Box Q statistics), and then we checked if the estimated ARIMA process is stationary and 

invertible. After the above criteria are satisfied for the selected model, the model has been used to forecast the prices 

for the next 600 Days. 

In our future work, we shall be attempting to develop an ANN model for price forecasting and a Hybrid model 

combining ARIMA & ANN. 
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