A Survey on Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

Rohit V.Adagale¹, Aniket C.Sanap², Anil V.Gitte³, Prof. R. H. Kulkarni⁴ ^{1,2,3,4} Department of Computer Engineering, JSPM Narhe technical campus, pune-411041, Maharashtra, India.

ABSTRACT

Today, peoples are increasing amount of time in social networks. However, because of the popularity of online social networks, cybercriminals are spamming on these platforms for potential victims. Spams invite users to external phishing sites or malware downloads huge security issue online and undermined the user experience. However, current solutions do not reveal the Twitter spamming accurately and indeed. In this article, we compared the performance of a wide range of conventional machine learning algorithms, with the aim of identify those that offer satisfactory detection and stability performance based on a large amount of true field data. With the objective in order to realize the real-time spam detection capability, we evaluated scalability algorithms. Performance the study evaluates the accuracy of the detection, the TPR / FPR and the F measure; stability analyzes the stability of algorithms using randomly selected training samples of different sizes. Scalability aims to better understand the impact of in reducing training time learning algorithms.

Keywords-Machine learning, Twitter, spam detection, parallel computing, scalability

1. INTRODUCTION

Social networking sites such as Twitter, Facebook, Instagram and some enterprise of online social network have become extremely popular in the last few years. Individuals spend vast amounts of time in OSNs making friends with people who they are familiar with or interested in. Twitter, which was founded in 2006, has become one of the most popular micro blogging service sites. Around 200 million users create around the 400 million new tweets per day the growth of spam. Twitter spam, which is referred as unsolicited tweets containing malicious links that directs victims to external sites containing malware spreading, malicious link spreading etc. has not only affected a number of legitimate users but also polluted the whole platform. Consider the example as during the Australian Prime Minster Election in 2013 published an alert that confirmed its Twitter account @AusElectoralCom was hacked. Many of its followers received direct spam messages which contained malicious links. The ability to sort out useful information is critical for both academia and industry to discover hidden insights and predict trends on Twitter. However, spam significantly brings noise into Twitter. To automatically detect spam, machine learning algorithms have been applied by researchers to make spam detection as a classification problem. Classifying a streaming tweet instead of a Twitter user to spam or non-spam is more realistic in the real world.

2. RELATED WORK

Sr.	Author, Title and Journal		Disadvantag		
No.	Name	Advantages	e	Refer Points	
1	Q. Cao, M. Sirivianos, X.	1. Identifying highly	1. This work	1. SybilRank, an effective and	
	Yang, and T. Pregueiro,	suspicious accounts by	is carried out	efficient fake account inference	
	"Aiding the detection of	ranking users.	manually so	scheme, which allows OSNs to	
	fake accounts in large scale	2. Low computational	it is time	rank accounts according to their	
	social online services," in	cost.	consuming	perceived likelihood of being	
	Proc. Symp. Netw. Syst.		and	fake.	
	Des. Implement. (NSDI),		expensive	2. It works on the extracted	
	2012, pp. 197–210.		based on	knowledge from the network so	
			CAPTCHA.	it detects, verify and remove the	
				fake accounts.	
2	G. Stringhini, C. Kruegel,	1. To improve the	1. Mainly	1. Help to detect spam	
	and G. Vigna, "Detecting	security.	require the	Profiles even when they do not	
	spammers on social	2. To detect spammers	historical	contact a honey-profile.	
	networks," in Proc. 26th	on Twitter this based on	information	2. The irregular behavior of user	
	Annu. Comput. Sec. Appl.	the machine learning	to build the	profile is detected and based on	
	Conf., 2010, pp. 1-9.	algorithm.	social graph.	that the profile is developed to	
				identify the spammer.	
3	J. Song, S. Lee, and J. Kim,	1. The spam filtering	1. The	1. A spam filtering method for	
	"Spam filtering in Twitter	systemWill be more	relation	social networks using relation	
	using sender receiver	powerful.	feature	information between users.	
	relationship," in Proc. 14 th	2. The accuracy is	approach is	2. System use distance and	
	Int. Conf. Recent Adv.	better. 3. Caching	very difficult	connectivity as the features	
	Intrusion Detection, 2011,	technique will help both	to calculate.	which are hard to manipulate by	
	pp. 301–317.	client-side and server-		spammers and effective to	
		side to reduce		classify spammers.	
		computing overhead.			
4	K. Lee, J. Caverlee, and S.	1. The deployment of	1. Mainly	1. System analyzes how	
	Webb, "Uncovering social	social Honey pots for	Time	spammers who target social	
	spammers: social	harvesting deceptive	consuming	networking sites operate.	
	honeypots + machine	spam profiles from	and resource	2. To collect the data about	
	learning," in Proc. 33rd	social Networking.	consuming	spamming activity, system	
	Int. ACM SIGIR Conf.	2. Statistical analysis of	for the	created a large set of "honey-	
	Res.Develop. Inf. Retrieval,	these spam's profiles.	system.	profiles" on three large social	
	2010, pp. 435–442.			networking sites.	

5	Nathan Aston, Jacob	1. Suitable for	1.	1. The implementation feature
5		unbalanced classes		reduction we were able to make
	Liddle and Wei Hu*,		Independenc	
	"Twitter Sentiment in Data	2. Simple computation	e assumption	our Perceptron and Voted
	Streams with Perceptron,"	3. Suitable for	for	Perceptron algorithms more
	in Journal of Computer	incremental learning	computing P_c	viable in a stream environment.
	and Communications,		often invalid	2. In this paper, develop methods
	2014, Vol-2 No-11.		2.	by which twitter sentiment can
			Conservative	be determined both quickly and
			estimate	accurately on such a large scale.
6	K. Thomas, C. Grier, D.	1. Fledgling spam-as-a-	1. Low	1. The behaviors of spammers on
	Song, and V. Paxson,	service market	barrier to	Twitter by analyzing the tweets
	"Suspended accounts in	- Affiliate programs	creating	sent by suspended users in
	retrospect: An analysis of	- Account providers	accounts	retrospect. 2. An emerging spam-
	Twitter spam," in Proc.		2. Weak	as-a-service market that includes
	ACM SIGCOMM Conf.		defenses,	reputable and not-so-reputable
	Internet Meas., 2011, pp.		slow	affiliate programs, ad-based
	243–258.		response	shorteners, and Twitter account
				sellers.
7	K. Thomas, C. Grier, J.	1. It provides 90.78%	1. Expensive	1. Monarch is a real-time system
	Ma, V. Paxson, and D.	accuracy for identifying		for filtering scam, phishing, and
	Song, "Design and	web service spam.		malware URLs as they are
	evaluation of a real-time	2. Run-time		submitted to web services.
	URL spam filtering	performance is high as		2. Monarch's architecture
	service," in Proc. IEEE	5.54 seconds.		generalizes to many web services
	Symp. Sec. Privacy, 2011,			being targeted by URL spam,
	pp. 447–462.			accurate classification hinges on
				having an intimate understanding
				of the Spam campaigns abusing a
				service.
8	X. Jin, C. X. Lin, J. Luo,	1. Automatically	NA	1. Proposed SocialSpamGuard, a
	and J. Han,	harvesting spam		scalable and online social media
	"Socialspamguard: A data	activities in social		spam detection system based on
	mining based spam	network by monitoring		data mining for social network
	detection system for social	social sensors with		security.
	media networks," PVLDB,	popular user bases;		2. GAD clustering algorithm for
	vol. 4, no. 12, pp. 1458–	2. Introducing both		large scale clustering and
	1461, 2011.	image and text content		integrate it with the designed
		features and		active learning algorithm
		social network features		

		to indicate spam activities; 3. Integrating with our GAD clustering algorithm to han- dle large scale data; 4. Introducing a scalable active learning approach to identify existing spams with limited human efforts, and Perform online active		
		learning to detect spams		
		in real-time.		
9	S. Ghosh <i>et al.</i> , "Understanding and combating link farming in the Twitter social network," in <i>Proc. 21st Int.</i> <i>Conf. World Wide Web</i> , 2012, pp. 61–70.	 Vast amounts of information and real- time news Twitter search becoming more and more common Search engines rank users follower-rank, Pagerank to decide whose tweets to return as search results High indegree (#followers) seen as a metric of influence 	NA	 Search engines rank websites / webpages based on graph metrics such as Pagerank High in-degree helps to get high Pagerank Link farming in Twitter Spammers follow other users and attempt to get them to follow back
10	H. Costa, F. Benevenuto, and L. H. C. Merschmann, "Detecting tip spam in location-based social networks," in <i>Proc. 28th</i> <i>Annu. ACM Symp. Appl.</i> <i>Comput.</i> , 2013, pp. 724– 729.	1. High accuracy	NA	 Identifying tip spam on a popular Brazilian LBSN system, namely Apontador. Based on a labeled collection of tips provided by Apontador as well as crawled information about users and locations, we identified a number of attributes able to distinguish spam from non-spam tips.

3. PROPOSED SYSTEM APPROACH

In proposed system, we evaluate the spam detection performance on our dataset by using machine learning algorithms. The process of Twitter spam detection by using machine learning algorithms. Before classification, a classifier that contains the knowledge structure should be trained with the prelabeled tweets. After the classification model gains the knowledge structure of the training data, it can be used to predict a new incoming tweet. The whole process consists of two steps: learning and classifying. Features of tweets will be extracted and formatted as a vector. The class labels i.e. spam and non-spam could be get via some other approaches. Features and class label will be combined as one instance for training. One training tweet can then be represented by a pair containing one feature vector, which represents a tweet, and the expected result, and the training set is the vector. The training set is the input of machine learning algorithm, the classification model will be built after training process. In the classifying process, timely captured tweets will be labeled by the trained classification model.

3.1 Advantages

- Extraction of features and categories as Tag based features and URL based features.
- The system implements a method which will use ML mechanism to detect whether the post is spam or not.
- The system implements application can also be hosted online for its use and the data will be stored and fetched from server.
- User with maximum number of spam can be blocked from the system.

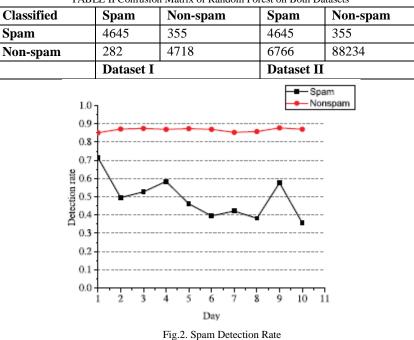


Fig 1. Proposed System Architecture

4. SYSTEM ANALYSIS

TABLE I Performance Evaluation on Datasets I and II						
Unit:%	Dataset I			Dataset II		
Classifier	TPR	FPR	F-measure	TPR	FPR	F-measure
Naive Bayes	97.3	77.1	70.9	97.3	78.8	11.5

TABLE II Confusion	Matrix of Random	Forest on Both Datasets



5. CONCLUSION

In this Project, System found that classifiers ability to detect Twitter spam reduced when in a near realworld scenario since the imbalanced data brings bias. System also identified that Feature discretization was an important preprocess to ML-based spam detection. Second, increasing training data only cannot bring more benefits to detect Twitter spam after a certain number of training samples. System should try to bring more discriminative features or better model to further improve spam detection rate.

6. REFERENCES

- Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro, "Aiding the detection of fake accounts in large scale social online services," in *Proc. Symp. Netw. Syst. Des. Implement. (NSDI)*, 2012, pp. 197–210.
- [2] G. Stringhini, C. Kruegel, and G. Vigna, "Detecting spammers on social networks," in *Proc. 26th Annu. Comput. Sec. Appl. Conf.*, 2010, pp. 1–9.
- [3] J. Song, S. Lee, and J. Kim, "Spam filtering in Twitter using sender receiver relationship," in Proc. 14th Int. Conf. Recent Adv. Intrusion Detection, 2011, pp. 301–317.
- [4] K. Lee, J. Caverlee, and S. Webb, "Uncovering social spammers: social honeypots + machine learning," in Proc. 33rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2010, pp. 435–442.

www.ijiird.com

- [5] Nathan Aston, Jacob Liddle and Wei Hu*, "Twitter Sentiment in Data Streams with Perceptron," in *Journal* of Computer and Communications, 2014, Vol-2 No-11.
- [6] K. Thomas, C. Grier, D. Song, and V. Paxson, "Suspended accounts in retrospect: An analysis of Twitter spam," in *Proc. ACM SIGCOMM Conf. Internet Meas.*, 2011, pp. 243–258.
- [7] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, "Design and evaluation of a real-time URL spam filtering service," in *Proc. IEEE Symp. Sec. Privacy*, 2011, pp. 447–462.
- [8] X. Jin, C. X. Lin, J. Luo, and J. Han, "Socialspamguard: A data mining based spam detection system for social media networks," *PVLDB*, vol. 4, no. 12, pp. 1458–1461, 2011.
- [9] S. Ghosh *et al.*, "Understanding and combating link farming in the Twitter social network," in *Proc. 21st Int. Conf. World Wide Web*, 2012, pp. 61–70.
- [10] H. Costa, F. Benevenuto, and L. H. C. Merschmann, "Detecting tip spam in location-based social networks," in *Proc. 28th Annu. ACM Symp. Appl. Comput.*, 2013, pp. 724–729.